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Overcoming Nonrenormalizability. Part 2
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The procedures to overcome nonrenormalizability of j4n, n \ 5, quantum field
theory models that were presented in a recent paper are extended to address
nonrenormalizability of jp3 , p=8, 10, 12,..., models. The principles involved in
these procedures are based on the hard-core picture of nonrenormalizability.
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INTRODUCTION

The present paper may be regarded as an addendum to a recent paper, (1)

where proposals were advanced to overcome nonrenormalizability for j4n
models, quartic self-interacting scalar field models with spacetime dimen-
sion n \ 5. (Similar techniques were also proposed to overcome triviality
for the renormalizable but not asymptotically free model j44.) In this short
note we extend the same scheme to advance a proposal designed to over-
come nonrenormalizability in models such as jp3 , for n=3 and powers
p=8, 10, 12,..., as well. (If the renormalizable model j63 is trivial and not
asymptotically free, then our proposals should work for this model as well.)
For background as well as notational questions we urge the reader to
consult. (1)

The philosophy underlying our formulation is based on the hard-core
picture of nonrenormalizable interactions. A brief introduction to this
viewpoint is offered in ref. 1; a more detailed discussion appears in ref. 2.
As one important consequence we are led to consider renormalization
counterterms that are entirely different from those suggested by conven-
tional perturbation analyses. Let us start with an heuristic, motivational
discussion.



We work entirely in Euclidean spacetime and assume the theories of
interest arise as suitable continuum and infinite volume limits of a lattice
model formulated on a large but finite cubic lattice with a dimensionless
lattice spacing a and periodic boundary conditions. From the viewpoint of
critical phenomena the models in question involve multicritical points, and
therefore upper critical dimensions, above which mean field arguments are
generally applicable, depend on the choice of p. It is straightforward to
show that several correlation functions of interest for jp3 models are given
as follows (see, e.g., refs. 3–5):

SkOj0jkP3 a−2,

Skk2Oj0jkP3 a−4,

Sk2, k3,..., k2rOj0jk2jk3 · · ·jk2rP
T3 a[2p−4r(p−1)]/[p−2],

for relevant r values of the form r=1+j(p−2)/2, j=0, 1, 2,..., and where
k ¥ Z3 denotes a lattice site, T denotes the truncated (or connected) com-
ponent, and we have assumed all odd-order correlation functions vanish. It
is conventional to recast these expressions into the single combination

gr —−
Sk2, k3,..., k2rOj0jk2jk3 · · ·jk2rP

T

[SkOj0jkP] r [Skk2Oj0jkP/6SkOj0jkP]3(r−1)/2
.

The expression for gr is dimensionless, enjoys rescaling invariance (i.e.,
jk Q Sjk, S > 0, for all k), and admits a meaningful continuum limit. In
particular, for small a it follows that

gr 3 a (r−1)(p−6)/(p−2).

Therefore, when p \ 8 and aQ 0 we find that gr Q 0 for all relevant
r \ p/2. This behavior—which is analogous to what one finds for j4n
models when n \ 5 (6)—strongly suggests, in the continuum limit, that the
nonrenormalizable jp3 models exhibit ‘‘infidelity.’’ By infidelity we mean
that the resultant quantum theory has a trivial classical limit, clearly differ-
ing from the original classical theory, and thus casting doubt on the quan-
tization procedure itself. This result arises because (i) the quantization loses
the fp3 interaction (a conclusion supported by renormalization group anal-
ysis), and (ii) any surviving interactions, e.g., f43 and possibly f63, have been
induced and therefore arise from one or more loop contributions. Such
terms therefore have (-dependent coupling constants. Thus, in the classical
limit where (Q 0 all interactions disappear leading to classical triviality.
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The dependence on the lattice spacing a that has led to this claim has
arisen from summing over the whole lattice and is based on divergent
behavior that emerges near a second-order phase transition. If, by some
procedure, we could simultaneously rescale all correlation functions uni-
formly so that

Ojk1jk2 · · ·jk2rP3 a (p−6)/(p−2), all r \ 1,

then, with this modification taken into account, it follows that gr 3 a0=1,
for all relevant r, and the door to fidelity is open. To achieve that uniform
rescaling, we closely follow the scheme presented in ref. 1.

ALTERNATIVE LATTICE MODEL

The sought-for generating functional for lattice-space Schwinger func-
tions S{h} will be expressed in the form

S{h} — [T{h}]NR,

T{h} — FN F eShkjka
3−A−PP djk.

Let us examine the ingredients in these expressions separately.
The conventional probability distribution for a jp3 model is given by

D —Ne−A,

where

A — 1
2 S(jkg−jk)

2 a+1
2 mo(a)

2 Sj2ka
3+l(a) Sjpka

3,

and

N−1 — F e−AP djk.

As before, k ¥ Z3 denotes a lattice site, and kg denotes each of the three
positive nearest neighbors to k.

We now modify the distribution D as follows. First, let

F —Ka(p−6)/(p−2),
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where K is a positive constant, and focus on the region where F < 1. Next,
consider

FNe−A,

which (due to F ) is no longer a normalized distribution. To restore nor-
malization, we introduce an auxiliary, nonclassical (proportional to (2)
term given by

P — 1
2 A(a) S[j

2
k−B(a)]/[j

2
k+B(a)]

2 a3

into the action to yield

DŒ — FNe−A−P.

The potential chosen for P is a regularized version of A/2j2(x), which is
the only ‘‘pure’’ counterterm that introduces no new dimensional coupling
constant for any spacetime dimension. The factors A(a) and B(a) that
appear in P are positive and, as discussed below, they are chosen so that DŒ
is a normalized distribution.

At this stage all the various correlation functions are small (of order F )
and need to be brought back to normal size. To that end, we raise the
generating functional T{h} to the power NR — Qa−(p−6)/(p−2)R, where Q · R
denotes the integral part of its argument. The result is a new generating
functional, S{h}, all truncated correlation functions of which are increased
in magnitude over those of T{h} by the factor NR. One may understand
this procedure as allowing for the use of reducible sharp-time field operator
representations, a liberalization well known to be important in advanced
quantum field theory studies. (7)

As the final step in our construction we take the continuum limit
aQ 0, accompanied by another limit in which the lattice size grows to
eventually cover all of R3. In the continuum limit we require that B(a)Q 0,
while A(a) may or may not diverge as aQ 0. If A(a) diverges we assume
that it diverges at a rate slower than a−4 (see ref. 1); in that case, the dis-
cussion regarding how the form of P has been chosen is identical to the
discussion presented in ref. 1, and so it is not repeated here. As in ref. 1,
after the continuum and infinite volume limits, the final result for S{h}
corresponds to a generalized Poisson distribution. (8)

It is noteworthy that an analogous construction has been carried out
rigorously and successfully in one spacetime dimension, i.e., Euclidean time
alone; see Chap. 10 in ref. 2. This calculation was not motivated by a study
of any of the usual nonrenormalizable theories, but it may be used to lend
credence to the present proposal for such models when analyzed by similar
methods.
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Approximate Evaluation

In addition, in ref. 1, we presented a crude approximation for evaluat-
ing the normalization condition that ensures that DŒ is a probability distri-
bution. That argument can also be carried over directly to the present
situation. In this approximate calculation it was assumed that the entire
lattice volume V=(La)3, where L denotes the number of lattice points on
one edge of the cubic lattice, is divided into M cells of volume v=(ta)3,
where t denotes an approximate correlation length. For simplicity in
evaluation it was assumed that all field variables within a correlation
volume v were exactly correlated, while field variables in distinct correla-
tion volumes were assumed to be entirely uncorrelated. Moreover, in any
calculation establishing normalization of DŒ, one first chooses the behavior
of B(a) in a suitable way (see ref. 1), e.g., as

B(a)=|ln(a)|−2,

and then determines A(a) in relation to that choice. The strong simplifica-
tions that were made led to a rough, approximate expression for A(a) given
by

A(a)=(2/M) [(p−6)/(p−2)] (La)−3 |ln(a)|−1,

Unfortunately, this result for A(a) is only a leading order estimate, which is
insensitive to important parameters such as m20 and l. More precise deter-
mination of A(a) would include its dependence on such model parameters,
in particular on the coupling constant l.

PSEUDOFREE THEORY

It is important to note that the factor F which rescales all the correla-
tion functions is independent of l. If we consider the limit of the interacting
theory as lQ 0+, it must be kept in mind that the resultant limit will not be
the conventional free theory. Instead, the limiting theory is what we call the
pseudofree theory. (1, 2) The pseudofree theory is therefore the noninteracting
theory to which the interacting theory is continuously connected. Stated
otherwise, the conventional free theory is not even continuously connected
to the interacting theory, and therefore perturbation-theoretic generated
counterterms are not reliable! As a consequence, the pseudofree theory
acquires interest in its own right, and from a computational point of view it
would be a good place to begin because it has one less parameter than the
interacting theory. Note as well that each power p in the jp3 models seems
to correspond to a different pseudofree theory since the parameter p enters
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into F and therefore into A(a) in an apparently significant way. It would
be of considerable interest if Monte Carlo methods could be used to satisfy
the normalization condition and thereby to help determine the pseudofree
theory for one or more p values.

QUANTUM FIELDS

We expect all the models discussed in this paper to correspond to
quantum field theories after Wick rotation for the following reasons: The
essential requirements to lead to a quantum field theory are Euclidean
invariance, reflection positivity, moment growth, and clustering. These
conditions are satisfied by the original theory and are not disturbed by an
overall scaling (F ) and an additional local interaction (P). Multiple copies
also preserve these properties. So long as there is a uniform lower bound
on the mass, the continuum and infinite volume limits should have the
desired effect.

OTHER MODELS

Although we have confined our attention in this paper to jp3 models
for values of p \ 8, it should be evident that similar methods can be
extended to multicritical points associated with other nonrenormalizable
models such as jpn whenever p > 2n/(n−2) and n \ 4. This analysis would
therefore extend the class of models considered in ref. 1. The essential
changes to major formulas given in this paper would be that in this more
general case

gr 3 a (r−1)[n(p−2)−2p]/[p−2],

for all relevant r, which would involve a uniform rescaling such that

Ojk1jk2 · · ·jk2rP3 a[n(p−2)−2p]/[p−2], all r \ 1.

To obtain this rescaling requires that

F=Ka[n(p−2)−2p]/[p−2],

and, correspondingly, that

NR=Qa−[n(p−2)−2p]/[p−2]R.

With these changes, the discussion is substantially similar to that given in
the present paper, augmented when necessary by the contents of ref. 1.
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DEDICATION

It is a pleasure to dedicate this article to the 70th birthday of Elliott
Lieb. Elliott is a long-time friend and someone I have admired for his ana-
lytical skills and his remarkable originality for many years. I wish him a
long life, full of happiness and continued quality research.
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